Backpropagation oder auch Backpropagation of Error bzw. Fehlerrückführung[1] bzw. Rückpropagierung ist ein verbreitetes Verfahren zum Einlernen künstlicher neuronaler Netze. Es gehört zur Gruppe der überwachten Lernverfahren und wird als Verallgemeinerung der Delta-Regel auf mehrschichtige Netze angewandt. Dazu muss ein externer Lehrer existieren, der zu jedem Zeitpunkt der Eingabe die gewünschte Ausgabe, den Zielwert, kennt.
Die Rückwärtspropagierung ist ein Spezialfall eines allgemeinen Gradientenverfahrens in der Optimierung, basierend auf dem mittleren quadratischen Fehler.